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The Jones matrix formalism that has been used to analyze
quasioptical millimeter-wave circuits is extended for specific ap-
plication to high-frequency electron paramagnetic resonance
(EPR). A survey of general expressions for Jones matrices of
elements commonly used in quasioptical EPR spectrometers is
given. The Jones matrix representations of quasioptical transmis-
sion and reflection cavities are derived, and their relationship to
the equivalent circuit and transmission line representations used
for conventional EPR cavities is demonstrated. The formalism is
applied to selected quasioptical EPR spectrometer designs and
experimental tests of the formalism are presented for two config-
urations of a quasioptical spectrometer operating at 220
GHz. © 2000 Academic Press

Key Words: millimeter wave; Fabry—Perot interferometer; in-
duction bridge; circuit analysis; Gaussian beam.

alyzed using equivalent circuit§4) or transmission line mod-
els (5), which do not explicitly treat polarization-sensitive
components such as are found, for example, in an inductic
mode spectrometeb(6, 16. In fact, one can generalize the
conventional methods of analysis to handle the more compls
cases 16), but the method is easiest to use when only on
polarization state at a time is analyzeld/(18.

Martin and co-workers have made the point that man
quasioptical components can be regarded as strict synony!
of the relevant components in waveguide-based microwa
circuits (19). For example, the use of a polarization-trans
forming reflector as a quarter-wave transformer for transmi
receive duplexing is the quasioptical equivalent of

[

waveguide-based technique originally developed at micrc
wave frequencies20). This correspondence has motivatec
us to seek a deeper connection among equivalent circui
transmission line analysis, and optical methods of analys

As the method of electron paramagnetic resonance (EFR)EPR spectroscopy.
has been extended to higher frequencies and magnetic fieldn this paper we offer an extension of the basic Jones matr
strengths, alternative technologies have been required to fegmalism developed earlied(7, 13 that introduces a rigor-
place the waveguide-based methods used at 150 GHz amwg Jones matrix representation for the EPR sample cav
below. Several groups have introduced quasioptical methodétaelf. The expressions may be related to the equivalent circt
millimeter wavelengths in increasingly complex configurationdescription that is conventionally used to model EPR spe:
that approach the full functionality of standard EPR microwaveometers and also to the impedance matrix of network ar
bridges (—12. The development of quasioptical EPR spedransmission line theory. The resulting formalism can be us
trometers has led to a need for analyzing the expected perfluily integrated into a general analysis of spectrometer perfo
mance of such devices, as various new quasioptical equivalem@nce and sensitivity and can also be utilized to identif
for different spectrometer configurations are developed, e.guasioptical methods for discriminating absorption from dis
transmission model¢-3), reflection mode4—8), and induction persion resonance signals using standard homodyne mi»
mode 6, 6). detection.

One established method of analyzing quasioptical circuits atSection 2 presents a brief introduction of the Jones matr
millimeter wavelengths is the Jones matrix representati@)) ( formalism and the development of new Jones matrix expre
which has found general application in mm-wave spectroscogipns for quasioptical transmission and reflection EPR cavitie
and signal analysis. The formalism has many of the sam@e formalism is then applied to analyze two practical imple
advantages as standard circuit diagrams in characterizing afnéhtations of quasioptical EPR bridges in Section 3, after
predicting the behavior of component assemblies such as njfief introduction of Jones matrix expressions for the othe
rors, rooftop mirrors, and polarizing wire grids. In contrasguasioptical components required. The phase discriminati
conventional EPR spectrometers have most typically been @ghavior predicted for these two important circuit configura

tions is experimentally tested in Section 4. Finally, a compal
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2. THEORY a 7’1111 R C L 1

N,
2.1. The Jones Matrix Representation
In the Jones matrix formalism, the polarization state of the
electric field of the radiation is expressed as a column vector Ro
whose elements are the components of the field along the

vertical and horizontal directions:

. Ey
E= (EH> ' [1]
The horizontal direction is defined so that the unit vestox b R C L
H lies along the direction of propagation. In geneBal,andE,, n;:l
are complex numbers. When they have the same pliage,
linearly polarized at an angle = tan *|E|/|E,| with respect W/\N\/‘II_W
to the vertical. When the phaselgf, differs from that ofg, by

—m/2 or +m/2, E has right-hand or left-hand circular polar-

ization, respectively.
At certain points it will also be useful to utilize a represen-
tation based on the circular polarization states: FIG. 1. Equivalent electrical circuit representations for (a) a transmissio
transformer with a In, turns ratio at the output, as shown in

cavity and (b) a reflection cavity.
S E
e=(g). 2

Fig. 1a (4, 2J.

where + and — refer, respectively, to right- and left-hand = Assuming that the cavity reactan¥ecan be represented by

circular polarization. The two representations are related by thg effective inductance and an effective capacitance in seri
transformations

_ _ 1 _ 0w
E, :E 1 i\(E X—wL—E—wOL 0w [4]
E.) —2\1 —i/\E,
(E\,) _ < 1 1) ( E+> 3] wherew, = 1/VLC is the resonant frequency of the cavity.
Ey/) — \—=i i J\E_)" The unloaded quality factor of the cavity is
2.2. Jones Matrix Representation for a Quasioptical EPR
Cavit woL
Y Qu="F7"- (5]

In this section, we consider two methods that have conven-
tionally been used to represent EPR cavities, the equivalent
circuit representation and the transmission line representatifive define the coupling parameters,
The second of these is most closely related to quasioptics, since

the free space propagation of a single mode such as the Zo Zo
fundamental of a Gaussian beam lends itself to analysis by a Bi= R’ B2= nR’ (6]
1 2

transmission line analogy. By comparing these two methods
and taking advantage of the analogy with quasioptical propa-
gation, Jones matrices for both transmission and reflectiitgn the loaded and radiatio@ factors of the cavity are,
quasioptical cavities can be derived. The transfer matrix afRPectively, given by

impedance matrix representations of transmission line ele-

ments will both be utilized in this derivation. Qu
Equivalent circuit representation. The simplest equivalent Q= 1+ B+ B,
circuit representation of a transmission cavity consists of an
ideal transformer with an,:1 turns ratio at the input, a series Ox Qu 7]

RLC circuit representing the cavity plus sample, and an ideal Bt B2
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and the power transmitted, reflected, and
resonator circuit is

BUDIL ET AL.

absorbed by thdo find the system transfer matrix equivalent for the circuit:
shown in Fig. 1, the matrix representations for thé ideal
transformer and for a series impedaiare required Z4),

_4BiBs
T="a (8] ~(n 0
48, + 1) Mui=10 1/
R=1- """~ [9] 1 7
Mseriee(z) = <0 1)1 [14]
4
A= [10]
which give for the circuit
where wo_ (M 0 )\(1 R+iX)(n, 0
5 gr—\0 1/, /\O 1 0 n
w w
A=(1+B+B)%+ Qﬁ(w - wo> : [11] ~(ndny nny(R + iX) 15
’ -\ 0 n,/n, [15]

Analogous results for the reflection mode circuit shown i
Fig. 1b can be obtained by allowing, — 0 in the above
expressions, in which case the transmitted power is zero

n
Equations [4] through [6] may be substituted into the abov
£pression to give the transfer matrix in terms of the equivale

the resonance properties of the cavity are determined from fHEFUIt parameters:

reflected power.

Transfer matrix representation.We now seek to demon-
strate the equivalence of this circuit with a quasioptical cavity
such as a Fabry—Perot interferometer containing a paramag- '*' cr —
netic dielectric layer. A convenient means to accomplish this is
the transmission line transfer matrix representat2®) 6ince

) o)
(1 + IQU(&)O_

\/Bi
B1

B btz )
B2 \/@ @

0

(16]

transmission lines can be used to represent both microwave

circuits and the propagation of a single wave mode throué)%l

dielectric layers Z3).

The transfer matrix relates the input and output voltages a

currents of a linear two-port device as

() =m(i) = (2 o)

VOUT)

I out

For reciprocal devicesAD — BC = 1, and for symmetric
devicesA = D. A useful property of this representation is thal
the output current and voltage for a given element are equal
the input current and voltage of the next element. Thus, a seri
of optical or circuit elements may be represented by successive

s straightforward to verify that Eqs. [8] through [10] follow
directly from application of Egs. [13] to the above matrix with
{ngput and output impedance equalg, using the definitions
for power transmission, reflection, and absorption in term
of the field coefficientsT = [t|>, R = |r|?, andA = 1 —

(T + R).

Transfer matrix representation of a quasioptical EPR cavity
To represent a simple quasioptical cavity such as a Fabry—Pe
interferometer filled with a dielectric, two more representativ
atrices are required. A coupling element such as partial
I cf)lective wire mesh or iris may be represented as a shu
element of impedancg, (13, 25, 2§ on a transmission line,

Sich has the transfer matrix {, 20

(12]

w

multiplication of the matrices for each element.

The field reflection and transmission coefficients for a given

transfer matrix are given by

i AZout+ B— CZinzout - DZin
- AZ,+ B+ CZ,Z,+ DZ,
_ ZZout

 AZy+ B+ CZZowt+ DZy'

r

t

whereZ;, andZ,, are the input and output impedances.

1

0
1/z. 1) - [17]

Mol 20 = |

Application of the second of Egs. [13] to this matrix gives &
result consistent with standard expressions for the mirror r
flectivity (26). Typically, one assumes thaf is purely reactive
(i.e.,Z, = —iX,) and small 25), although this formalism can
handle small losses due to such effects as diffraction from &
iris or resistive losses in the metal of the mirror.

The transfer matrix for a slab of dielectric of thicknesand
impedanceZ = V ule is

(13]
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° | 2,2y, _—i 2,2y, n;cogk,d) I:J sin(Bd)
1
cogpd) |- [22]

ing
Eﬂ 7 sin(Bd) o

Thus, applying Eq. [21] to Eqg. [22] and to Eq. [17] wiit
0 o = —iX, one obtains

FIG. 2. Equivalent impedance “T"-network for a reciprocal two-port
device on a transmission line.

iZ,cot Bd j o d
X X)) 0 |n—105c[3
Xn Xn) = | Zo - Z I
i — cscpd FCOth
1

coshyd Zsinh~d Zo
M gie = , [18] n,

1
7 sinhyd coshyd

which has the solutiorBd = cos*(1/n,), n, = Z/(X,sin
wherey = ikoV e, ko = 27/), is the wave number of the Bd). For largen,, Bd — «/2 andn, — Z,/X,; i.e., the grid
radiation in free space, = €' + i€” is the permittivity of the becomes equivalent to an idesl 1 transformer followed by a
medium, andw = uo(1 + x) is its permeability. In the absencequarter-wave transmission line. Similarly, the shunt impedanc
of an EPR resonancg, = 1, and the complex components obf the second mirror can be shown to be equivalent to

v = a + i may be expressed as guarter-wave transmission line followed by an ideal ltrans
former. The net addition of a half-wavelength of transmissiol
B L e s Kee” line between the mirrors leaves the effective impedance of tt
a = Kolm{ e} = koy(\€'* + €"* —€)/2 = m dielectric medium inside the cavity unchanged.
A The matrix M 4o may be transformed into an equivalent
B = koRe \E} =Ky \/( Vet €7+ €2, [19] series impedance by adjustidgo that Im{sinhyd} = 0 (this

corresponds to the resonance condit@sh = ma). The ef-
In order to demonstrate the equivalencé/of,,.to an ideah:1 fective series impedancg,; at resonance may not be deter
transformer and that betwedfy,, and a series impedance, it ismined by directly comparing Eq. [18] with Eq. [15] sinZen
convenient to utilize an alternative representation for reciprodafl. [18] becomes indeterminate when sipth = 0. In terms
two-port devices known as the impedanc&ematrix (17, 22. of theZ matrix, this condition corresponds #a, — o, which
This representation relates the input and output currents aftectively removes the shunt impedance from the T-networl

voltages of the device as It is readily seen from Fig. 2 that maximum transfer of powe
through the T-network occurs when the short circuit is re
Vi, Lin Zi Zo\ ([ i moved, and the effective series impedance of the network w

(Vout) = Z(Iou) = <221 Zzz><|wt)- [20] be @., + Z,, — 2Z.,). Application of Eq. [21] to Eq. [18]

allows the series impedance to be written in terms of th
In terms of the elements & for a given systen®Z is given by dielectric properties,

_ (A/C (AD — BC)/C> B (A/C 1/C Zow= 2(Z11— Zy»)

1/C A/C> - [21]

1/C A/C . cosH{yd) — 1
Because of the properfD — BC = 1, Z,; = Z,, and the sinf(yd)
device may be represented by the equivalent “T-network” i vd
shown in Fig. 2. Transformation between equivalent represen- = i2Z tanh—>-
tations of a given device is then accomplished by equating the )
elements of th&Z matrices corresponding to each representa- = i2Z tanhad, [24]

tion.

In particular, a shunt impedance may be represented bywhere the final step makes use of the resonance conditi
equivalent circuit consisting of a length of lossless transmigd = ma. Note that for a lossless dielectrig,; = 0 and the
sion line of characteristic impedan&g followed by an ideal dielectric slab becomes a perfect “absentee layer” at resonan
n,:1 transformer Z2). When the real part of the propagatior-or relatively low-loss material, one may make the approxi
constanty for the transmission line is zero, the transfer matrimation tanhad ~ «d. Then, in the absence of an EPR
for this equivalent circuit is resonance (i.e., fon = 1) one may write
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« « Away from magnetic resonance, = w,, and
i2dZa = i2d — = i2dk, ., [25]
\’/e a + IB
: . . T 2\B1B2
which leads to an expression for the effecti@, of the t=x= A+ B+ By
dielectric layer: Bt B,
_R_(-pitp) 2B
_Imi{Zeh B _ € —eli2_ € 261 AT (L+B+B) — (A+Bi+py) 1B
u— Re{zeﬁ} - a - €" 2¢"

; ; : 2
where the last step applies the approximatiéh < €', ¢ ine cavity is detuned te = w, + dw by the EPR resonance
valid for low-loss material. Thus it has been shown that t@nd a fractionn of the sample volume is EPR active, the

equivalent circuit parameters conventionally used to dg:nsmission and reflection coefficients become
scribe EPR cavities may be expressed in terms of the elec-

tromagnetic properties of a dielectric-filled Fabry—Perot in-

terferometer. 2\B1B>
The Jones matrix representation of the quasioptical EPR t+ot= o
cavity can now be constructed from the field transmission and (1+ B+ By —iQy .
reflection coefficients obtained by applying Egs. [13] to the 0
transfer matrix in Eq. [16]: 2\B1B- .
= 7 a +ay (1—imQux)
(1+ B+ B2)
\/5132
- 0 o 1271 (1 B+ B — Q2
. 0 - 1 2) u
(1+ B+ B2) |Qu(w0 w) f 4 oSr = o
] 26w
(1+ B+ B2) —iQu——
and o
(1— B+ Ba) + 2iBmQux
o R S .
(1—B1+ B2 —iQyu o @
0 w
r= P (28]
(1+ B+ B2) — iQu< - 0) which are consistent with the standard resu®®).(
Wo @ Equations [32] are written for an unspecified polarizatior

state of the resonant radiation. In fact, for radiation propagatir

. - along the spectrometer field directiopjs only significant for
Equation [26] makes explicit the fact thek, depends only one sense of circular polarization, say the positive one, and

on the dielectric properties of the medium, as do the couplin sentially zero for the opposite sense. Thus, Eqs. [32] can

parametersﬁl'andﬁz to a good approxmatlon. Thus, an EP Lllsed to construct a Jones matrix in the circularly polarize
resonance will affect the transmitted and reflected fields Orb\é o

through its effect onw, which depends in turn upon the
effective index of refractionn = (ue)*? as

) (1) _ 2\BipB, (1 —imQux 0) <A+>
o= W”C_ [29] T ) (A+B.+ By 0 1/\A_
Ao
(R)=apm
Note thatw andn are in general complex quantities. An EPR R- (1+ By+ Bo)
resonance will change the permeability by an am@wut= y, 11— i
<o that % ( Bi+ B2) + 2iBimQLx 0
0 (1 - Bl + [32)
_(dw _2mc (1) e WoX % (A+>. [33]
so=(Gnlon =T (o) x5 A

where the last step includes the approximations 1/Z and This is readily transformed into the linearly polarized basis s
W =~ . according to Egs. [3]:
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(n) VBiB2 (1—inQLX nQux )(A)

T ~ (14 B1+ By -nQux 1—inQux/\ Ay
<Rv) _ 1 <(1 — B+ B2) +iBmMQux _BmQLX. )(Av> [34]
Ry (1+B,+ By —B1mQux —(1 =B+ B) —iBmQux/\Ay/-

The first of these equations contains the Jones matrix foffield of the reflected radiation in the same way as a regul:
transmission mode cavity, where the quantities of interest argrror. In the frame with the wires along the vertical axis, the
the transmitted fields. The second of Egs. [34] gives the fieldenes matrices for reflection and transmission are therefore
reflected from the cavity, adjusted for the sign convention of
the horizontal component. This expression makes clear that the _

, . Ry Ey 1 0\/Ry
EPR signal can be measured in the beam reflected from the R.] =CrlE. | = o ollRr
cavity as well as in the transmitted beam. To obtain the Jones : "

matrix for a reflection cavity, one ses = 0 in the second of Ry G Ev) (0 0 (EV 37
Egs. [34], leaving a single coupling paramefger Ry~ “T\Ey/ —\O0 1/\Ey/- [37]
(Rv> _ 1 If the grid is placed at an angle éfrelative to the vertical, as
Ry (1+p) in the configurations discussed below, the reflection and trar
: mission matrices become
(7 B iBmQux prox ) > |
—BnQux —(1—-pB) —iBnQux
A _(cos6 —sinf)\/—1 0)/cos6 —sino
X ( V) Gr(9) = \sing coso 0 0)\sino coso
Ay [35]
[ —cos®  —cos# sin 6
~ \cos6 sino sin?6
. o . ; » Lo cosf® sinf\/0 0\/cosf -—sin6
This matrix is defined so that “output” of the cavity gives the G (9) = (—sin 0 cos 9> <0 1) ( sing  cose )

reflected fields according to the convention for the sign of the

horizontal field. cos0 —cosh sin 0
- (—cos@ sin 6 sin?0 ) [38]

2.3. Jones Matrices for Other Quasioptical Components
Rooftop mirror. The rooftop mirror consists of two planar

We now introduce Jones matrices for the other quasioptiGg|ors at a right angle to each other. The axis common to bo
components that will be utilized in the quasioptical EPR Spefianes is placed perpendicular to the direction of beam pro
trometer circuits discussed below. A more complete survey 9f 5iion . FoiE fields parallel to the axis, two reflections of the
Jones matrices for general quasioptical applications has bgelient heam leave the vector orientation unchanged.EFor
given by Lesurf {3). . . fields perpendicular to the axis, the output vector is rotated k

Mirror.  The Jones matrix for an ideal planar reflector ign angle ofr from the input vector. Thus, if the incideftfield

given by is at an angle ofr/4, the combined reflections result in a net
rotation of the polarization direction by/2. In the frame

M = (RV> _ <—1 0><EV> [36] where the rooftop axis is vertical, the Jones matrix is simpl

Ry 0 1)\Ey/)- the unit matrix, taking into account the convention for the

positiveH direction of the reflected radiation. When the axis i
Because the tangential component of the electric field mysaced at an arbitrary anglewith respect to the vertical, the
vanish at the surface of a conductor, the reflected fields a@nes matrix is given by
rotated by relative to the incident fields; the expression above
takes into account the convention for the positivelirection co0 — sinf0  —2 coso sin
of the reflected beam. Rr(0) = <_2 cosO sinf coh — sin20>' [39]

Wire grid. A wire grid with appropriate wire diameter and

spacing will reflect thé field component that is parallel to the Free-space propagation.The phase change due to travel
direction of the wires and transmit the orthogonal componeat a wave through a distanckin space may be represented by
(28). For fields along the wire direction, the grid will invert thethe matrix
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2md\/1 0 _ (ar—ibyz bz
®(d) = eXP<A> (0 1)- [40] Cr= ( —bz  a —ibsz
aR + |bRZ _bRZ
: - s Citly i i i Cr= —bgz  —ag—ibgz ) [42]
Most typically this matrix is explicitly included in a quasiop- R R R
tical circuit in order to represent the difference in distances
traveled over two paths in the quasioptical circuit.
where
3. APPLICATION OF THE JONES MATRIX FORMALISM 2 [B.Ba
VP1P2
ar=-—, 5, br=amQ
3.1. General Procedure for Analyzing EPR Circuits Tl B R T T
We now proceed to examine Jones matrix representations ag = 1-5:, bg = B 70, [43]
for the two quasioptical EPR circuits that are most commonly 1+8; 1+8;
used above 150 GHz, namely a simple transmission mode
spectrometer and an induction mode spectrometer utilizingaad
reflection cavity. As usual for cw EPR, it will be assumed that
the Zeeman field is modulated at a frequeagyand a phase- z=7 +iz" = ((x) +i(x")")sin wyt, [44]
sensitive detection scheme (lock-in amplifier) is used to filter
the signal at the same frequency. in which the superscript indicates the first derivative of th

For an arbitrary lineshape functid(¥) that is analytic over sysceptibility function with respect to frequency. Thus,
an appropriate interval around the point x, one may apply gives the magnitude of the “carrier” power ahg represents
the Taylor expansion to obtain the time-dependent sig@)l ( the signal amplification due to the cavity.

3.2. Transmission Spectrometer

) - , 1 d"f(x) o ) o .
f(x + h sinw,t) = D h"sin"w,t oA ) [41] The circuit for a simple transmission cavity arrangemer
n=0 noax (i.e., source—cavity—detector) with a vertically polarizec
source is

For simplicity of presentation, only terms up to first order in sin
wnt will be retained from Eq. [41]. This will allow the essential C.V = <
features of phase-sensitive detection to be illustrated for the

two circuit geometries. . .
By analogy with waveguide-based EPR, phase discrimir@-nonpolarizing detector such as a bolometer will measure tt

tion requires a mixer in which the detector is illuminated by thedm of the vertical and horizontal field amplitudes, producin:
EPR signal and a reference signal in such a way that teignal given (after substituting Eq. [44]) by
relative phases of the two signals can be controlled. In the
following discussion, the effect of the dc bias provided by the 87 — 2arbsin w,t(x") + 2bisinfwt((x' )% + (x"™)?).
reference or carrier signals will be neglected, since many of the [46]
commercially available detectors at mm-wave frequencies are
internally biased. However, the formalism does allow an evdf-a polarizer is placed in front of the detector so as to admit th
uation of the bias, and it is possible in principle to vary the Relectric field component that is oriented at an angleith
bias level for several of the designs discussed below. respect to the vertical, the incident electric field is the weighte

The transmission mode circuit discussed below may als§gm of the vertical and horizontal components given in Ec
include a polarizing element in front of the detector. Such dASI:
element is intrinsic to rectangular waveguide-mounted detec-
tors, since the waveguide functions essentially the same way as E, = cosf(a; + b;z) — sin 6 (ib+2)
a wire grid reflector with the wires parallel to the broad face of
the waveguide. The same functionality can be achieved by
placing a wire grid in front of nonpolarizing detectors such as — sin 6 (brsin wt(x” ™ + ix’ ™). [47]
bolometers.

In order to clarify the results for each circuit, terms will be
collected in the matrices for transmission and reflection cavihe power detected will be proportional to the squared ampl
ties tude of this field,

ar + isz>

o [45]

= cosf(ar + brsin wt(x"® + iy’ @)
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FIG. 3. Circuit diagram of the induction mode spectrometer configuratioB
based on a central wire grid with a moveable rooftop mirror in the referenc

arm that enables phase adjustment of the reference signal.

|Eq|? = a2cos’0 + asb[(cos 20 + 1)x" ™ — sin 20y’ ]

X sin Ot + b2 ((x' )2+ (x" V) ?)]sin%wyt.

to the reflected radiation because of the convention defining tl
H direction. Thus, the grid appears first@g(w/4) and then as
Gr(—(7/4)) in the matrix product describing the path that goe
through the cavity shown in Fig. 3.

In its simplest implementation, the induction mode spec
trometer resembles a standard polarizing interferoma&@y; (
with the exception that there is no quarter-wave transforme
between the sample arm and the polarizing grid. The sour
power is divided into two paths. In the first path, the compo
nent of the initially vertically polarized radiation that is trans-
mitted through the grid is not rotated upon reflection from th
cavity and thus passes back through the grid toward the sour
However, one of the linearly polarized components of th
circularly polarized EPR signal is reflected by the grid into the
detector. In the second path, the component that is initial
reflected from the grid is directed onto a rooftop mirror, rotate
Y 7/2, transmitted by the grid, and combined with the EPF
signal at the detector. The phase difference between the t
waves determines the phase of the measured EPR signal. T
is controlled by adjusting the rooftop mirror position to vary
the difference in path lengths between the sample and referer
arms. The sum of the two paths is

[48] T ™
| ! (o D)oo 3))
This result demonstrates how the detector polarization leads
to phase discrimination of the EPR signal in the simple trans- - -
mission mode. The first, time-independent term represents the + (GR<_ 4) CRGT( 4) ) } \

transmitted source power at the detector, which depends upon

the detector orientation. More importantly, the sip() term 1
contains both absorption and dispersion terms, which are 2

1 <—e*"’ —sz), [49]

eid) _bRZ

weighted according to the detector angle. There is a half-angle

relationship between the detector angle and the phase angifich gives the signals for a vertically polarized detector,
that determines the amount of absorption and dispersion in the

observed spectrum. This arises from the’6asependence of
the detected power on the orientation angle of the detector. |Ev|? =

3.3. Induction Spectrometer

1 b
i 7R [cosdyx’ M — sin px” P]sin wt
bk .
+4 (X M2+ (x" M) ?)sinwqt, [50]

In order to recover phase information while operating with a
reflection cavity, it is necessary to divert some of the source
power into a reference arm, by analogy with conventionahd for a horizontally polarized detector,
waveguide-based EPR bridges. Typically a polarizing wire
grid is used for this purpose, although a nonpolarizing dielec- 1 bg . _
tric beam splitter may also be utilized. The beams reflected  |Exl* = 2~ o lLcos dx' ' = sin ox" V]sin wyt
from the reference arm and the sample cavity are recombined
in the detector with a phase difference that is controlled by
changing the relative path lengths of the two beams. One
example of such a circuit is the induction mode spectrometer,
shown in Fig. 3. This circuit must be represented by the sum of 4. EXPERIMENTAL
two matrix products representing the paths along the sample

b2
2 (24 (D) sinfot. [51]

and reference arms.

We now present experimental tests of the signal pha:

In reflection cavity designs, it is also worth noting thabehavior predicted by the Jones matrix formalism for the tw

optical components oriented with a rotation anglefoivith

spectrometer configurations detailed in the last section. Sin

respect to the incident radiation present a rotation anglef the scales of the absorption and dispersion components of
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EPR signal are related by the Hilbert transform (i.e., the
Kramers—Kimig relations), the phase of an arbitrary signal
may be measured by determining the relative contributions of
absorption and dispersion in the spectrum. This is most con-
veniently accomplished when both the absorption and the
dispersion lineshapes are well represented by analytical expres-
sions such as the Lorentzian function. In this case, the relativez
amounts of absorption and dispersion may be determined byg
least-squares analysis of the experimental spectrum. £
A standard sample of 1 mM Tempone in undegassed tolueng
solution was chosen for this analysis. This probe produces ag
motionally averaged three-line spectrum typical of nitroxides £
at ambient temperatures. At 220 GHz, rotational spin relax-

ation and line-broadening due to dissolved oxygen produce a
lineshape that is very well approximated by the Lorentzian ,u-a.\}
function. The experimental spectra were fitted by Levenberg— U i/

Marquardt nonlinear least-squares with a linear combination of
Lorentzian absorption and dispersion lineshapes given by the 8
function

@ (arl

Si
Intensity (arb.units)

3 7835 7.84 7845 783 7835 7.84 7.845
Field/T Field/T

FIG. 4. Representative 220-GHz absorption (top) and dispersion (botton
spectra of 1 mM Tempone in toluene obtained in transmission (left) an

3 —2b (X — ¢y induction (right) modes as described in the text. Solid lines show typice

g(x) = Z aa 2 2\ 2 least-squares fits of three Lorentzian lines (Eqg. [52]) to the experimental da
LT (= cp)® + by

(b2 — (x— ¢y ?d In both transmission and reflection cavities, the liquid san

tap —c)2+ b2 [52] ple was held in a cell consisting of two 25-mm-diameter
((x = cp) m)

0.33-mm-thick quartz windows (Boston Piezo) separated by
1.6-mm Teflon spacer ring with a 15-mm aperture. The ce
assembly was sealed around the edges with epoxy (Torr-Se
Varian Inc.) and a radial hole was carefully drilled into the
andc,, the field position of thenth line. center chamber to allow the introduction and remoyal of san

The locally constructed quasioptical 220-GHz spectromet@lte' The cell was held norma! to the beam path in a slee
used to obtain the experimental spectra has been descriBghveen the two mirrors described above and kept in place |

elsewhere §). Here we summarize the spectrometer featur@s'€tainer ring. , ,
that are most critical to the experiments described. The milli- The sample volume was approximately 340. Since the

meter-wave source (Millimeter Wave Oscillator Co., Lon spectra were obtained in a low-loss solvent, it was not nece

mont, CO) produces 220-GHz radiation in a rectangulSAY to utilize thin samples or optimize the thickness of eithe

waveguide that is converted to a circular waveguide mode afitf Windows or the sample layer, as has been described pre
Ksly for agueous sample8, 3.

launched into a Gaussian beam by a scalar conical horn s ) ) )
tenna (ZAX Millimeter Wave Co.). The output of the source is Figure 4 shows examples of both absorption and dispersi

vertically polarized. spectra obtained in transmission mode and by observing t

The source power is transmitted through a lens beam guir@électeq signal iq induqtion mode. Intermediate admixtures
to a semiconfocal cavity consisting of a flat, partially reflectivPSOrption and dispersion could be observed when the ph
mirror and a spherical mirror. In the transmission mode, radi@s adjusted as described below for each of the spectrome
ation is coupled through a small aperture in the sphericgnfigurations. For comparison with the predictions of th
mirror, launched from a smooth conical horn, and propagatéanes matrlx analyses f_orthese circuits, the relative arp_ounts
down a second beam guide. absorptlon and dlspersmn. in the spegtra were quantified as

The detector used for these experiments is a Schottky did4gction of phase angle adjustment using least-squares analy
(Millitech Corp., DXW-04) mounted in a short length of rect®S described above. The solid lines in Fig. 4 show typic:
angular WR-04 waveguide. The Gaussian beam emerging frifSt-sauares fits of Eq. [52] to the experimental data.
the beam guide is converted to the appropriate rectangu{s}g
waveguide mode by a second scalar horn/waveguide transition.
The rectangular waveguide thus serves as a polarizing elemenrh the experiments carried out using the simple transmissic
in front of the detector. cavity design, the input horn of the detector was mounted on

The fitting parameters include,, the amplitude of the absorp
tion componenta,, that of the dispersiory,,, the Lorentzian
linewidth (i.e., the inverse homogeneotg of the mth line;

nsmission Cavity
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Spectra were recorded as a function of mirror position (witl
arbitrary zero) and analyzed by least-squares fitting as befo
The normalized absorption and dispersion coefficients are plc
ted in Fig. 6 as a function of rooftop mirror displacemeint
relative to the central grid of the circuit. Solid lines indicate the
least-squares fits of the functions

a, = cogkd + ¢)
ap = sin(kd + ¢),

Intensity (arb. units)

with k and ¢ as variable parameters. The phase argfeom
the fitting procedure is not meaningful, since it merely specifie
the zero of the arbitrary distance scale. The valule @ftained
was 9.01+ 0.07 mm™*, which corresponds to a wavelength of
1.4 mm since the change in path length is twice that of th
+Y mirror displacement.

<

A

-100 -50 0 50 100
Detector rotation angle/degrees

Induction Spectrometer with Cavity

FIG. 5. Relative amplitudes of absorption (circles) and dispersion (cross- Figure 7a shows one example of the highly skewed pha:
es) signals as a function of detector rotation measured using a simple trgpatterns that may be observed in the presence of a flat cav
mission configuration with the cavity placed between the source and theirror. The normalized absorption and dispersion coefficien
detector. Lines indicate least-squares fits as described in the text. shown in Fig. 7a were obtained in exactly the same way as t

in Fig. 6, with the exception that both of the mirrors around th
sample shown in Fig. 3 were present. The cavity was tuned
stage that allowed rotation of the detector about the symmefgsonance by moving the spherical mirror so as to minimize tt
axis of the horn. Zero rotation was defined to be the orientatiggfiected power before the spectra were measured as funct
at which the rectangular waveguide accepts vertically polarizggl rooftop mirror rotation.
input (i.e., with the long axis of the waveguide cross-section setpegpite the complicated appearance of the patterns in t
horizontal using a bubble level on the case of the detectoplesence of the flat mirror, they were quite well fitted by
Spectra were recorded and the relative contributions of absoggsuming that the bias signal at the mixer consisted of tt
tion and dispersion determined for a series of different detector
orientations.

Figure 5 shows a plot of the unscaled absorption and dis- 1.0 @ ' | "
persion coefficients as a function of detector angle rotaion I
The solid lines indicate the least-squares fits of the functions
a, = C,sin(260 + ¢)
ap = Cp[1 + cog26 + ¢)] [53] '

to the data (cf. thg/® and y’® coefficients in Eq. [48]). The
scale factor€,, andC, were allowed to vary independently in
the fitting procedure.

Induction Spectrometer without Cavity

A similar set of phase measurements was performed using
the induction spectrometer arrangement shown in Fig. 3, with Lo
the_ exception that the flat mirror of the s_ample cavity was 44 45 16 47 a8 49 5
omitted to reduce possible phase anomalies due to standing Rooftop mirror displacement/mm
waves (cf. Discussion below). In this mode, the phase differ- _ _ , _ _ _

between the reference sianal and the EPR sianal FSIG. 6. Relative amplitudes of absorption (circles) and dispersion (cross
en_ce . 9 : . 9 Vg signals as a function of rooftop mirror translation measured using tt
adjusted by moving the rooftop mirror relative to the centrgdquction configuration shown in Fig. 3 but omitting the flat partially reflective
grid, which changed the path length of the reference armiror in the cavity. Lines indicate least-squares fits as described in the te;

Normalized Intensity
<
%
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a: 5. DISCUSSION

Phase Discrimination

The experimental results demonstrate that the Jones mat
formalism quite accurately predicts the phase behavior of tt
two systems investigated. In particular, in transmission mod
the magnitudes of both absorption and dispersion signals €
hibit the double-angle dependence on the detector orientati
predicted by Eq. [48], including the co{2+ 1 dependence of
the absorption component. Thus, a “negative” absorption sif
nal cannot be observed by adjusting the signal phase in tt
configuration. It follows that the actual phase of the signal in
transmission mode system, defined as tag/a,, is not given
B R Ty R TR T directly by one-half the detector orientation angle.

For the induction mode data, the results display the sinusc
dal dependence predicted by Eq. [50] for both the absorptic
and the dispersion signals. In induction mode, both positiv
and negative sighals may be observed for both the absorpti
and the dispersion signals.

Rooftop mirror displacement/mm

b

Transmission Cavity Design

The only single-path spectrometer configuration that permi

phase discrimination of the signal is the simplest transmissic

Re system consisting of a cavity placed between the source an
polarizing detector. This geometry allows one to discriminat

phase without a separate reference signal because the cat

FIG. 7. (a) Relative amplitudes of absorption (circles) and dispersiognd the EPR signal have different polarizations. Equation [4°

(crosses) signals as a function of rooftop mirror translation measured using iy, s that the carrier signal is attenuated as the detec
induction configuration shown in Fig. 3 including the flat partially reflective

mirror in the cavity. Lines indicate least-squares fits as described in the text.@ﬁlarizaﬂon is rotated, but its phase remains unChanged'
Phasor diagram showing the relative phases and amplitudes of the refereg@@atrast, for the circularly polarized EPR signal, the appare
signal and a standing wave formed by reflection from the cavity. The amglephase of the linearly polarized component that is transmitte
is varied by changing the position of the rooftop mirror. through a polarizing element may be advanced or delayed |
rotating the element, but its magnitude remains unchange
This makes it possible to vary the effective phase of the EP
reference arm signal added to a standing wave signal wiignal relative to that of the carrier simply by rotating the
constant phase. Specifically, the solid lines shown in Fig. @atector polarization. Thus, even in the absence of a separ
were calculated using the expressions bias signal, a detector with a polarizing element functions as
homodyne mixer in the transmission arrangement, whereas
. nonpolarizing device functions as a simple detector.
2, = Re{Eqy + exli(kd + )]} then thegsample in a quasioptical trr)ansmission cavity |
ap = IM{Eq, + exdi(kd + ¢)]}, ?Iluminated With Iinea_rly polarized rad_iation, only hglf of th_e
incident power is available for magnetic resonance, just as in
conventional waveguide-based sample cavity. One mig
where the reference signal is assumed to have unit magnituttierefore expect to increase the EPR signal by utilizing th
and the real and imaginary parts of the standing wave vectmrrect circular polarization. This may be accomplished b
E., were varied separately in the least-squares fitting progaacing a suitable quarter-wave transformer between the ce
dure. The magnitude d, determined from the fit was 0.91tral polarizing grid and the sample cavity, as has been demo
times that of the reference vector, with real and imaginastrated by Earlet al. (4) and Smithet al. (6). Up to a twofold
components of 0.7& .| and 0.5TE.{, respectively. The value increase in absolute signal intensity can in principle be realize
of k obtained from the curve fitting was identical to thawith this approach, assuming that there are no differences
obtained from the data in Fig. 6 to within experimental errodetector sensitivity or cavity tune in the two configurations.
The results are summarized in the form of a phasor diagram inrHowever, it is important to note that the relative phases ¢
Fig. 7b. the bias and EPR signals at the detector cannot be controll
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when both are circularly polarized. Jones matrix analysis désign is that the ESR signal component at frequeagy
configurations employing one or two quarter-wave demomappears with opposite signs in the vertical and horizont:
strates that phase information cannot be retrieved from thelarizations, whereas the reference signal appears with t
transmission mode signal in these cases. For ideal systemsame sign. This feature lends itself conveniently to a balanct
lock-in detector will measure a pure absorption signal when the@xer design in which two matched mixers are set to measu
signal is illuminated with circular polarization in transmissiofin the vertical and horizontal directions and the signals at
mode. While this limitation may not seem undesirable, devialectronically subtracted. The signal intensity can thus be do
tions of the cavity from resonance, the presence of higher-ord#ed with such an arrangement, while AM noise from the
modes in the cavity, and even strong, asymmetric EPR signatsirce is largely suppressed.
can lead to significant admixture of dispersion into the signal. When all of the above factors are considered, the inductic
The absence of phase adjustability in such configurations thasde configuration emerges as perhaps the most useful des
significantly limits their utility. for general work. Smittet al. (5, 6) have described an induc-
tion spectrometer that combines many of the advantages
individual components discussed above. The design functio
in essentially the same way as the spectrometer shown in F
A major advantage of the induction mode circuit that i8, but incorporates a number of significant refinements of th
apparent from Eqgs. [50] and [51] is that the carrier wavieasic design that minimize stray reflections and standir
reflected from the cavity with coefficieat, does not appear at waves. The greatly decreased noise sensitivity in the inductic
the detector in either the vertical or the horizontal polarizatioarrangement more than compensates for the reduced sig
This results from the fact that there is no rotation of thmtensity at the detector.
incident beam polarization between the dividing grid and the
sample cavity. One consequence of this arrangement is tg‘?&nding Waves
only one linearly polarized component of the EPR signal
reaches the detector. Depending upon the bias characteristicBhe presence of standing waves in the system can dramz
and dynamic range of the detector, this feature may signifially alter the simple sinusoidal dependence of the absorpti
cantly reduce the absolute signal power available at the detand dispersion signal intensities predicted by the basic Jor
tor relative to the simple transmission spectrometer. Howevenatrix formalism, as shown in Fig. 7a. Presumably, standin
such a reduction can be mitigated or even eliminated by theves arise between an imperfectly matched cavity and oth
proper choice of detector. partially reflective elements in the transmission circuit. Al-
The simplest induction mode design shown in Fig. 3 utilizebough it is difficult to extend the formalism itself to account
fully half of the source power as a bias signal for the detectdgr such effects waves explicitly, the basic result can be con
which may be unsuitable for many detection schemes. Thmed with the appropriate vector analysis to identify an
design can be significantly refined by introducing elements thataracterize adventitious signals in the system. In this way, :
allow control over the amount of power that is directed along§PR cavity containing a well-characterized sample can t
the reference arm, since only a small bias power is needednade to serve as aad hocvector analyzer.
operate many homodyne mixers. In place of the dividing grid Perhaps the most important effect of strong system standi
oriented atm/4, it is possible to use a dielectric beam splittewaves is on the spectrometer sensitivity. As noted in Append
(26) to divert a small fraction of the power into the referenc2 of Ref. ), even small deviations of the cavity frequency
arm and thus maximize the power in the sample arm. In tHi®m resonance can lead to a significant amount of conversi
case, a separate grid is needed to recombine the signal withahd-M noise from the source to AM noise at the detector
reference beam. Variations in the cavityQ appear as changes in the coefficient:
It is also possible to control the reference bias withow; anda; (as well as the much smallbg andb; terms) in the
additional grids by rotating the central grid (cf. Fig. 3). Fodones matrix expressions. One of the major causes of su
example, with vertical incident polarization, a grid oriented ateviations is microphonic vibration of the cavity mirrors or
about 5° from the horizontal would send approximately 1% (sample due to Lorentz forces on the field modulation coil
—20 dB) of the power to the reference arm, which is awhich can be quite large at high magnetic fields.
appropriate level for low-temperature bolometer mixers. Ad- Microphonic vibrations can lead to direct modulation of the
ditional control over the bias power reflected into the detectoarrier signal, so that the terms dependingagrandas in the
could be achieved by rotating the axis of the rooftop mirrodones matrix expressions have a sift) dependence that
These additional adjustments are easily accounted for in #ygpears in the signal at the lock-in amplifier. In addition tc
Jones matrix expressions by utilizing the general matrix forngenerating greater noise, these effects produce a large base
given in Egs. [38] and [39] for arbitrary orientations of theseffset that limits the dynamic range of the lock-in amplifier.
elements. Thus, circuit arrangements that allow a significant amount
A second important characteristic of the induction modeower reflected from the cavity to reach the detector may t

Induction Mode
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much more susceptible to noise than circuits which isolate thePerhaps surprisingly, this result shows that the magnitude
cavity from the detector, leading to lower sensitivity despitthe signal is the same regardless of whether one excites para
the apparently larger signal intensity. and observes perpendicular to the mirror polarization or excit
perpendicular and observes parallel to it. In the former case, t
cavity amplifies the millimeter-wave power, whereas in the
latter, the cavity amplifies the EPR signal itself.

We now briefly compare the Jones matrix derived for a Such a cavity might be useful in time-domain spectromete!
quasioptical reflection cavity to recent results from an altern@here isolation of the detection circuitry from high-powerec
tive type of cavity analysiss, 32. The essence of the approact$ource pulses is desired. It could also be utilized as a variabl
is to construct a set of field equations for the resonator base¥Pling cavity by rotating the orientation of the polarizing
upon the reflection, transmission, and absorption coefficients/BH#Tor with respect to the input polarization. The general forn
the cavity elements, including the EPR sample. One can thiéh such a Jones matrix would then be given by a coordina
solve for the incident and reflected fields as well as for the fielfgRnsformation, by analogy with the other polarizing element
circulating in the cavity. discussed above.

Th_e shunt transmission cavity analyzed by Barnes and_ Fre8fhitations and Possible Extensions of the Jones Matrix
(32) in this way allows the coupling parameter for the cavity to Formalism
be varied by adjusting the spacing between a pair of dielectric
beam splitters in the center of the cavity. The second majorWe now briefly examine some of the major assumption c
feature of the cavity is that the spherical cavity mirrors arfde Jones matrix formulations in order to assess their validi
placed along an axis perpendicular to the direction of t4@r practical applications, and we briefly indicate how the
incident beam. This geometry allows planar samples suchf@gnalism may be adjusted to compensate for them. The fir:
aligned membranes to be placed with their normal axis péd probably the most important, assumption is that the tw
pendicular to the spectrometer field. Despite the significalfiear polarization states in the cylindrical cavity are well
differences in the geometry of the shunt transmission cavi§plated 30 dB). Problems may arise if cross-polar mode
from the Fabry—Perot geometry utilized in most high-fredre excited by the quasioptical elements used to couple rad
guency spectrometers, the results of their analysis correspdf@ into the cavity. Since polarizing elements with at least 3
directly with the Jones matrix given for a quasioptical tranlB of isolation are readily available, this is usually a negligible
mission cavity in Eq. [34]. For the particular design describegffect. However, the sample itself may scatter the incider
by Barnes and Freeg, and 8, in Eq. [34] would be essen POWer into the orthogonal mode by mechanisms other the
tially equal. magnetic resonance. These effects can in general be mode

Smithet al.(6) have presented a similar cavity field analysi8Y including additional off-diagonal terms in the Jones matri

for the basic Fabry—Perot resonator. One of their major cofeS for the cavities that couple the two orthogonal linee
clusions was that the magnitude of the cross-polar signal fréRPdes.
a cavity illuminated with plane-polarized radiation has a field A second major assumption of the formalism is that there |
strength similar to that of the copolar signal if the reflectivit@ Single resonant mode inside of the cavity, specifically th
of the coupling mirror is the same for both linear states. Thigndamental mode of a Gaussian beam. Mode impurities in
result follows immediately from an examination of Eq. [35]iNPut beam, irregularities in sample geometry, scattering frol
which is the Jones matrix expression for a reflection cavity i[iS€s or imperfections in the cavity mirrors, and apertur
which the coupling mirror has a reflectivity that is independe&ffects can all cause coupling into higher radial modes of tt
of the incident polarization state. cavity. Such modes tend to have field distributions over

Also treated in the analysis of Smitt al. is the case of a larger effective diameter than the fundamental mode wit
cavity in which one of the mirrors is polarizing. In this case, thBodes near the sample region. More importantly, higher mod
field analysis shows that the cross-polar signal is obtained wf@n differ in phase from the fundamental so that electron spi
a sensitivity proportional to@,)*? whereQ, is defined in which interact primarily with a higher radial mode may pro-
terms of the coupling parameter for the mirror in the copol&ice an EPR signal with a significantly different phase fror
direction. The corresponding Jones matrix for this case may th@t of the carrier wave. (We have accidentally observed th

derived by analogy with the equivalent circuit analysis give@ffect in liquid samples that developed a large bubble near
by Portis and colleagued §, 33. center of the cavity where the field amplitude of the funda

mental mode is concentrated.) In principle, this type of effec
could be handled by constructing a Jones matrix for each of tl

Comparison with Alternative Treatments

/
i BQL nx ( BQL ) ' an relevant higher order modes and utilizing a scattering matrix t
(RV) B 1+ B) 1+ (Av> (54] introduce coupling between the modes. In practice, however,
Ru Aw should generally be more effective to adjust the signal phase

- BQL 1/2
_ —i . ..
<1 + B) X X the detector to compensate for mode impurities.
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The third major assumption of the formalism presente@rant RR07126-07. The resources of the Cornell Theory Center aided in t
above is that the Cavity is tuned to its resonant frequency a@malysis of several of the spectrometer configurations reported on here. \
thank Dr. Stephen Kolaczkowski for assistance in assembling the differe

that the magnetic resonance causes Only a small deviation frgo%igurations used under Experimental. Useful discussions with Professt
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noise performance have been considered above. Here we nekgowledged.
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