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The Jones matrix formalism that has been used to analyze
quasioptical millimeter-wave circuits is extended for specific ap-
plication to high-frequency electron paramagnetic resonance
(EPR). A survey of general expressions for Jones matrices of
elements commonly used in quasioptical EPR spectrometers is
given. The Jones matrix representations of quasioptical transmis-
sion and reflection cavities are derived, and their relationship to
the equivalent circuit and transmission line representations used
for conventional EPR cavities is demonstrated. The formalism is
applied to selected quasioptical EPR spectrometer designs and
experimental tests of the formalism are presented for two config-
urations of a quasioptical spectrometer operating at 220
GHz. © 2000 Academic Press

Key Words: millimeter wave; Fabry–Perot interferometer; in-
duction bridge; circuit analysis; Gaussian beam.

1. INTRODUCTION

As the method of electron paramagnetic resonance (
has been extended to higher frequencies and magnetic
strengths, alternative technologies have been required
place the waveguide-based methods used at 150 GH
below. Several groups have introduced quasioptical metho
millimeter wavelengths in increasingly complex configurat
that approach the full functionality of standard EPR microw
bridges (1–12). The development of quasioptical EPR sp
trometers has led to a need for analyzing the expected p
mance of such devices, as various new quasioptical equiv
for different spectrometer configurations are developed,
transmission mode (1–3), reflection mode (4–8), and induction

ode (5, 6).
One established method of analyzing quasioptical circu
illimeter wavelengths is the Jones matrix representation13),
hich has found general application in mm-wave spectros
nd signal analysis. The formalism has many of the s
dvantages as standard circuit diagrams in characterizin
redicting the behavior of component assemblies such as
ors, rooftop mirrors, and polarizing wire grids. In contr
onventional EPR spectrometers have most typically bee
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lyzed using equivalent circuits (14) or transmission line mod
ls (15), which do not explicitly treat polarization-sensit
omponents such as are found, for example, in an indu
ode spectrometer (5, 6, 16). In fact, one can generalize t

onventional methods of analysis to handle the more com
ases (16), but the method is easiest to use when only
olarization state at a time is analyzed (17, 18).
Martin and co-workers have made the point that m

uasioptical components can be regarded as strict syno
f the relevant components in waveguide-based microw
ircuits (19). For example, the use of a polarization-tra
orming reflector as a quarter-wave transformer for trans
eceive duplexing is the quasioptical equivalent o
aveguide-based technique originally developed at m
ave frequencies (20). This correspondence has motiva
s to seek a deeper connection among equivalent cir

ransmission line analysis, and optical methods of ana
n EPR spectroscopy.

In this paper we offer an extension of the basic Jones m
ormalism developed earlier (4, 7, 13) that introduces a rigo
us Jones matrix representation for the EPR sample c

tself. The expressions may be related to the equivalent c
escription that is conventionally used to model EPR s

rometers and also to the impedance matrix of network
ransmission line theory. The resulting formalism can be
ully integrated into a general analysis of spectrometer pe
ance and sensitivity and can also be utilized to ide
uasioptical methods for discriminating absorption from
ersion resonance signals using standard homodyne
etection.
Section 2 presents a brief introduction of the Jones m

ormalism and the development of new Jones matrix ex
ions for quasioptical transmission and reflection EPR cav
he formalism is then applied to analyze two practical im
entations of quasioptical EPR bridges in Section 3, af
rief introduction of Jones matrix expressions for the o
uasioptical components required. The phase discrimin
ehavior predicted for these two important circuit config

ions is experimentally tested in Section 4. Finally, a com
son and discussion of the results for the two configuratio
iven in Section 5.
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21JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
2. THEORY

2.1. The Jones Matrix Representation

In the Jones matrix formalism, the polarization state of
electric field of the radiation is expressed as a column v
whose elements are the components of the field alon
vertical and horizontal directions:

E¢ 5 SEV

EH
D . [1]

The horizontal direction is defined so that the unit vectorV̂ 3
ˆ lies along the direction of propagation. In general,EV andEH

are complex numbers. When they have the same phaseE is
linearly polarized at an angleu 5 tan21uEHu/uEVu with respec
to the vertical. When the phase ofEH differs from that ofEV by
2p/2 or 1p/2, E has right-hand or left-hand circular pol
ization, respectively.

At certain points it will also be useful to utilize a repres
tation based on the circular polarization states:

E¢ 5 SE1

E2
D , [2]

where 1 and 2 refer, respectively, to right- and left-ha
ircular polarization. The two representations are related b
ransformations

SE1

E2
D 5

1

2 S1 i
1 2iDSEV

EH
D

SEV

EH
D 5 S 1 1

2i i DSE1

E2
D . [3]

2.2. Jones Matrix Representation for a Quasioptical EPR
Cavity

In this section, we consider two methods that have con
tionally been used to represent EPR cavities, the equiv
circuit representation and the transmission line represent
The second of these is most closely related to quasioptics,
the free space propagation of a single mode such a
fundamental of a Gaussian beam lends itself to analysis
transmission line analogy. By comparing these two met
and taking advantage of the analogy with quasioptical pr
gation, Jones matrices for both transmission and refle
quasioptical cavities can be derived. The transfer matrix
impedance matrix representations of transmission line
ments will both be utilized in this derivation.

Equivalent circuit representation.The simplest equivale
circuit representation of a transmission cavity consists o
ideal transformer with ann1:1 turns ratio at the input, a ser
RLC circuit representing the cavity plus sample, and an
e
or
he

-

he

n-
nt
n.
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he
a

ds
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al

transformer with a 1:n2 turns ratio at the output, as shown
Fig. 1a (14, 21).

Assuming that the cavity reactanceX can be represented
an effective inductance and an effective capacitance in s

X 5 vL 2
1

vC
5 v0LS v

v0
2

v0

v D , [4]

wherev 0 5 1/=LC is the resonant frequency of the cav
The unloaded quality factor of the cavity is

QU 5
v0L

R
. [5]

If we define the coupling parameters,

b1 5
Z0

n1
2R

; b2 5
Z0

n2
2R

, [6]

then the loaded and radiationQ factors of the cavity are
respectively, given by

QL 5
QU

1 1 b1 1 b2

QR 5
QU

b1 1 b2
, [7]

FIG. 1. Equivalent electrical circuit representations for (a) a transmis
cavity and (b) a reflection cavity.
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22 BUDIL ET AL.
and the power transmitted, reflected, and absorbed b
resonator circuit is

T 5
4b1b2

D
[8]

R 5 1 2
4b1~b2 1 1!

D
[9]

A 5
4b1

D
, [10]

where

D 5 ~1 1 b1 1 b2!
2 1 QU

2S v

v0
2

v0

v D 2

. [11]

Analogous results for the reflection mode circuit show
ig. 1b can be obtained by allowingb2 3 0 in the abov

expressions, in which case the transmitted power is zero
the resonance properties of the cavity are determined fro
reflected power.

Transfer matrix representation.We now seek to demo
strate the equivalence of this circuit with a quasioptical ca
such as a Fabry–Perot interferometer containing a para
netic dielectric layer. A convenient means to accomplish th
the transmission line transfer matrix representation (22) since
ransmission lines can be used to represent both micro
ircuits and the propagation of a single wave mode thro
ielectric layers (23).
The transfer matrix relates the input and output voltages

urrents of a linear two-port device as

SVin

I in
D 5 M SVout

I out
D 5 SA B

C DDSVout

I out
D . [12]

For reciprocal devices,AD 2 BC 5 1, and for symmetri
evicesA 5 D. A useful property of this representation is t

he output current and voltage for a given element are equ
he input current and voltage of the next element. Thus, a s
f optical or circuit elements may be represented by succe
ultiplication of the matrices for each element.
The field reflection and transmission coefficients for a g

ransfer matrix are given by

r 5
AZout 1 B 2 CZinZout 2 DZin

AZout 1 B 1 CZinZout 1 DZin

t 5
2Zout

AZout 1 B 1 CZinZout 1 DZin
, [13]

whereZ in andZout are the input and output impedances.
he

n

nd
he

y
g-

is

ve
h
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t
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n

To find the system transfer matrix equivalent for the circ
shown in Fig. 1, the matrix representations for then:1 idea
ransformer and for a series impedanceZ are required (24),

M n:1 5 Sn 0
0 1/nD

M series~Z! 5 S1 Z
0 1D , [14]

which give for the circuit

M cir 5 Sn1 0
0 1/n1

DS1 R 1 iX
0 1 DS1/n2 0

0 n2
D

5 Sn1/n2 n1n2~R 1 iX!
0 n2/n1

D . [15]

Equations [4] through [6] may be substituted into the ab
expression to give the transfer matrix in terms of the equiv
circuit parameters:

M cir 5 1 Îb1

b2

Z0

Îb1b2
S1 1 iQUS v

v0
2

v0

v DD
0 Îb2

b1

2 . [16]

It is straightforward to verify that Eqs. [8] through [10] follo
directly from application of Eqs. [13] to the above matrix w
input and output impedance equal toZ0, using the definition
for power transmission, reflection, and absorption in te
of the field coefficients:T 5 utu 2, R 5 ur u 2, and A 5 1 2
(T 1 R).

Transfer matrix representation of a quasioptical EPR ca
To represent a simple quasioptical cavity such as a Fabry–
interferometer filled with a dielectric, two more representa
matrices are required. A coupling element such as par
reflective wire mesh or iris may be represented as a s
element of impedanceZg (13, 25, 26) on a transmission lin

hich has the transfer matrix (17, 20)

M shunt~Zs! 5 S 1 0
1/Zs 1D . [17]

Application of the second of Eqs. [13] to this matrix give
result consistent with standard expressions for the mirro
flectivity (26). Typically, one assumes thatZg is purely reactiv
(i.e., Zg 5 2iX g) and small (25), although this formalism ca
handle small losses due to such effects as diffraction fro
iris or resistive losses in the metal of the mirror.

The transfer matrix for a slab of dielectric of thicknessd and
impedanceZ 5 =m/e is
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23JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
M diel 5 S coshgd Z sinh gd
1

Z
sinh gd coshgd D , [18]

whereg 5 ik 0=me, k0 5 2p/l 0 is the wave number of th
radiation in free space,e 5 e9 1 ie0 is the permittivity of the
medium, andm 5 m0(1 1 x) is its permeability. In the absen

f an EPR resonance,m 5 1, and the complex components
g 5 a 1 ib may be expressed as

a 5 k0Im$Îe% 5 k0Î~Îe9 2 1 e0 2 2 e9!/ 2 5
k0e0

2 Re$Îe%

b 5 k0Re$Îe% 5 k0Î~Îe9 2 1 e0 2 1 e9!/ 2. [19]

In order to demonstrate the equivalence ofM shunt to an idealn:1
transformer and that betweenM diel and a series impedance, i
convenient to utilize an alternative representation for recip
two-port devices known as the impedance orZ-matrix (17, 22).
This representation relates the input and output current
voltages of the device as

S Vin

Vout
D 5 ZS I in

I out
D 5 SZ11 Z12

Z21 Z22
DS I in

I out
D . [20]

In terms of the elements ofM for a given system,Z is given by

Z 5 SA/C ~ AD 2 BC!/C
1/C A/C D 5 SA/C 1/C

1/C A/CD . [21]

Because of the propertyAD 2 BC 5 1, Z21 5 Z12 and the
device may be represented by the equivalent “T-netw
shown in Fig. 2. Transformation between equivalent repre
tations of a given device is then accomplished by equatin
elements of theZ matrices corresponding to each represe
tion.

In particular, a shunt impedance may be represented
equivalent circuit consisting of a length of lossless trans
sion line of characteristic impedanceZ0 followed by an idea
n1:1 transformer (22). When the real part of the propagat
onstantg for the transmission line is zero, the transfer ma

for this equivalent circuit is

FIG. 2. Equivalent impedance “T”-network for a reciprocal two-p
device on a transmission line.
al

nd

”
n-
he
-

an
s-

x

1 n1cos~k0d!
iZ0

n1
sin~bd!

in1

Z0
sin~bd!

cos~bd!

n1

2 . [22]

Thus, applying Eq. [21] to Eq. [22] and to Eq. [17] withZg

5 2iX g one obtains

S iXm iXm

iXm iXm
D 5 1 iZ0cot bd i

Z0

n1
cscbd

i
Z0

n1
cscbd i

Z0

n1
2 cot bd2 , [23]

hich has the solutionbd 5 cos21(1/n1), n1 5 Z0/(Xgsin
bd). For largen1, bd 3 p/ 2 andn1 3 Z0/Xg; i.e., the grid
becomes equivalent to an idealn1:1 transformer followed by
quarter-wave transmission line. Similarly, the shunt imped
of the second mirror can be shown to be equivalent
quarter-wave transmission line followed by an ideal 1:n2 trans-
former. The net addition of a half-wavelength of transmis
line between the mirrors leaves the effective impedance o
dielectric medium inside the cavity unchanged.

The matrix M diel may be transformed into an equival
series impedance by adjustingd so that Im{sinhgd} 5 0 (this
corresponds to the resonance conditionbd 5 mp). The ef-
fective series impedanceZeff at resonance may not be de-
mined by directly comparing Eq. [18] with Eq. [15] sinceZ in
Eq. [18] becomes indeterminate when sinhgd 5 0. In terms

f theZ matrix, this condition corresponds toZ123 `, which
ffectively removes the shunt impedance from the T-netw

t is readily seen from Fig. 2 that maximum transfer of po
hrough the T-network occurs when the short circuit is
oved, and the effective series impedance of the network
e (Z11 1 Z22 2 2Z12). Application of Eq. [21] to Eq. [18

allows the series impedance to be written in terms of
dielectric properties,

Zeff 5 2~Z11 2 Z12!

5 i2Z
cosh~gd! 2 1

sinh~gd!

5 i2Z tanh
gd

2

5 i2Z tanhad, [24]

where the final step makes use of the resonance con
bd 5 mp. Note that for a lossless dielectric,Zeff 5 0 and the

ielectric slab becomes a perfect “absentee layer” at reson
or relatively low-loss material, one may make the appr
ation tanhad ' ad. Then, in the absence of an E

resonance (i.e., form 5 1) one may write
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24 BUDIL ET AL.
i2dZa 5 i2d
a

Îe
5 i2dk0

a

a 1 ib
, [25]

hich leads to an expression for the effectiveQU of the
dielectric layer:

QU 5
Im$Zeff%

Re$Zeff%
5

b

a
5

e9 2 ueu/ 2

e0
<

e9

2e0
, [26]

where the last step applies the approximatione02 ! e92,
valid for low-loss material. Thus it has been shown that
equivalent circuit parameters conventionally used to
scribe EPR cavities may be expressed in terms of the
tromagnetic properties of a dielectric-filled Fabry–Pero
terferometer.

The Jones matrix representation of the quasioptical
cavity can now be constructed from the field transmission
reflection coefficients obtained by applying Eqs. [13] to
transfer matrix in Eq. [16]:

t 5
Îb1b2

~1 1 b1 1 b2! 2 iQUS v

v0
2

v0

v D [27]

and

r 5

~1 2 b1 1 b2! 2 iQUS v

v0
2

v0

v D
~1 1 b1 1 b2! 2 iQUS v

v0
2

v0

v D . [28]

Equation [26] makes explicit the fact thatQU depends onl
on the dielectric properties of the medium, as do the cou
parametersb1 andb2 to a good approximation. Thus, an E
resonance will affect the transmitted and reflected fields
through its effect onv, which depends in turn upon t
effective index of refraction,n 5 (me) 1/ 2 as

v 5
2pnc

l0
. [29]

Note thatv andn are in general complex quantities. An E
resonance will change the permeability by an amountdm 5 x,
o that

dv 5 Sv

mDdm 5
2pc

l0
S1

2D e

Îme
x <

v0x

2
, [30]

where the last step includes the approximationsn ' 1/Z and
v ' v0.
e
-
c-
-

R
d

e

g

ly

Away from magnetic resonance,v 5 v0, and

t 5
T

A
5

2Îb1b2

~1 1 b1 1 b2!

r 5
R

A
5

~1 2 b1 1 b2!

~1 1 b1 1 b2!
5 1 2

2b1

~1 1 b1 1 b2!
. [31]

If the cavity is detuned tov 5 v0 1 dv by the EPR resonan
and a fractionh of the sample volume is EPR active,
transmission and reflection coefficients become

t 1 dt 5
2Îb1b2

~1 1 b1 1 b2! 2 iQU

2dv

v0

5
2Îb1b2

~1 1 b1 1 b2!
~1 2 ihQLx!

r 1 dr 5

~1 2 b1 1 b2! 2 iQU

2dv

v0

~1 1 b1 1 b2! 2 iQU

2dv

v0

5
~1 2 b1 1 b2! 1 2ib1hQLx

~1 1 b1 1 b2!
, [32]

which are consistent with the standard results (27).
Equations [32] are written for an unspecified polariza

tate of the resonant radiation. In fact, for radiation propag
long the spectrometer field direction,x is only significant fo

one sense of circular polarization, say the positive one, a
essentially zero for the opposite sense. Thus, Eqs. [32] c
used to construct a Jones matrix in the circularly polar
basis:

ST1

T2
D 5

2Îb1b2

~1 1 b1 1 b2!
S1 2 ihQLx 0

0 1DSA1

A2
D

SR1

R2
D 5

1

~1 1 b1 1 b2!

3 S ~1 2 b1 1 b2! 1 2ib1hQLx 0
0 ~1 2 b1 1 b2!

D
3 SA1

A2
D . [33]

This is readily transformed into the linearly polarized basis
according to Eqs. [3]:
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STV

TH
D 5

Îb1b2

~1 1 b1 1 b2!
S1 2 ihQLx hQLx

2hQLx 1 2 ihQLxDSAV

AH
D

SRV

RH
D 5

1

~1 1 b1 1 b2!
S ~1 2 b1 1 b2! 1 ib1hQLx 2b1hQLx

2b1hQLx 2~1 2 b1 1 b2! 2 ib1hQLxDSAV

AH
D . [34]
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The first of these equations contains the Jones matrix
transmission mode cavity, where the quantities of interes
the transmitted fields. The second of Eqs. [34] gives the fi
reflected from the cavity, adjusted for the sign conventio
the horizontal component. This expression makes clear th
EPR signal can be measured in the beam reflected from
cavity as well as in the transmitted beam. To obtain the J
matrix for a reflection cavity, one setsb2 5 0 in the second o

qs. [34], leaving a single coupling parameterb.

SRV

RH
D 5

1

~1 1 b!

3 S ~1 2 b! 1 ibhQLx 2bhQLx
2bhQLx 2~1 2 b! 2 ibhQLxD

3 SAV

AH
D [35]

This matrix is defined so that “output” of the cavity gives
reflected fields according to the convention for the sign o
horizontal field.

2.3. Jones Matrices for Other Quasioptical Components

We now introduce Jones matrices for the other quasiop
components that will be utilized in the quasioptical EPR s
trometer circuits discussed below. A more complete surve
Jones matrices for general quasioptical applications has
given by Lesurf (13).

Mirror. The Jones matrix for an ideal planar reflecto
iven by

M 5 SRV

RH
D 5 S21 0

0 1DSEV

EH
D . [36]

ecause the tangential component of the electric field
anish at the surface of a conductor, the reflected field
otated byp relative to the incident fields; the expression ab

takes into account the convention for the positiveH direction
of the reflected beam.

Wire grid. A wire grid with appropriate wire diameter a
spacing will reflect theE field component that is parallel to t
direction of the wires and transmit the orthogonal compo
(28). For fields along the wire direction, the grid will invert t
a
re
s
f

the
he
es

e

al
c-
of
en

st
re
e

nt

field of the reflected radiation in the same way as a reg
mirror. In the frame with the wires along the vertical axis,
Jones matrices for reflection and transmission are theref

SRV

RH
D 5 GRSEV

EH
D 5 S21 0

0 0DSRV

RH
D

SRV

RH
D 5 GTSEV

EH
D 5 S0 0

0 1DSEV

EH
D . [37]

If the grid is placed at an angle ofu relative to the vertical, a
in the configurations discussed below, the reflection and t
mission matrices become

GR~u ! 5 Scosu 2sin u
sin u cosu DS21 0

0 0DScosu 2sin u
sin u cosu D

5 S 2cos2u 2cosu sin u
cosu sin u sin2u D

GT~u ! 5 S cosu sin u
2sin u cosuDS0 0

0 1DScosu 2sin u
sin u cosu D

5 S cos2u 2cosu sin u
2cosu sin u sin2u D . [38]

Rooftop mirror. The rooftop mirror consists of two plan
mirrors at a right angle to each other. The axis common to
planes is placed perpendicular to the direction of beam p
agation. ForE fields parallel to the axis, two reflections of
ncident beam leave the vector orientation unchanged. FE
elds perpendicular to the axis, the output vector is rotate
n angle ofp from the input vector. Thus, if the incidentE field

is at an angle ofp/4, the combined reflections result in a
rotation of the polarization direction byp/2. In the frame
where the rooftop axis is vertical, the Jones matrix is sim
the unit matrix, taking into account the convention for
positiveH direction of the reflected radiation. When the ax
placed at an arbitrary angleu with respect to the vertical, th
Jones matrix is given by

RR~u ! 5 S cos2u 2 sin2u 22 cosu sin
22 cosu sin u cos2u 2 sin2uD . [39]

Free-space propagation.The phase change due to tra
of a wave through a distanced in space may be represented
the matrix
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F~d! 5 expS2pd

l DS1 0
0 1D . [40]

Most typically this matrix is explicitly included in a quasio
tical circuit in order to represent the difference in distan
traveled over two paths in the quasioptical circuit.

3. APPLICATION OF THE JONES MATRIX FORMALISM

3.1. General Procedure for Analyzing EPR Circuits

We now proceed to examine Jones matrix representa
for the two quasioptical EPR circuits that are most comm
used above 150 GHz, namely a simple transmission m
spectrometer and an induction mode spectrometer utiliz
reflection cavity. As usual for cw EPR, it will be assumed
the Zeeman field is modulated at a frequencyvm and a phase
sensitive detection scheme (lock-in amplifier) is used to
the signal at the same frequency.

For an arbitrary lineshape functionf(j) that is analytic ove
an appropriate interval around the pointj 5 x, one may appl
the Taylor expansion to obtain the time-dependent signal29)

f~ x 1 h sin vmt! 5 O
n50

`

hnsinnvmtS 1

n!

dnf~ x!

dxn D . [41]

For simplicity of presentation, only terms up to first order in
vmt will be retained from Eq. [41]. This will allow the essen
features of phase-sensitive detection to be illustrated fo
two circuit geometries.

By analogy with waveguide-based EPR, phase discrim
tion requires a mixer in which the detector is illuminated by
EPR signal and a reference signal in such a way tha
relative phases of the two signals can be controlled. In
following discussion, the effect of the dc bias provided by
reference or carrier signals will be neglected, since many o
commercially available detectors at mm-wave frequencie
internally biased. However, the formalism does allow an e
uation of the bias, and it is possible in principle to vary the
bias level for several of the designs discussed below.

The transmission mode circuit discussed below may
include a polarizing element in front of the detector. Suc
element is intrinsic to rectangular waveguide-mounted d
tors, since the waveguide functions essentially the same w
a wire grid reflector with the wires parallel to the broad fac
the waveguide. The same functionality can be achieve
placing a wire grid in front of nonpolarizing detectors such
bolometers.

In order to clarify the results for each circuit, terms will
collected in the matrices for transmission and reflection c
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CT 5 SaT 2 ibTz bTz
2bTz aT 2 ibTz

D
CR 5 S aR 1 ibRz 2bRz

2bRz 2aR 2 ibRz D , [42]

where

aT 5
2Îb1b2

1 1 b1 1 b2
; bT 5 aThQL

aR 5
1 2 b1

1 1 b1
; bR 5

b1

1 1 b1
hQL [43]

and

z 5 z9 1 iz0 5 ~~x9! ~1! 1 i ~x0! ~1!!sin vmt, [44]

in which the superscript indicates the first derivative of
susceptibility function with respect to frequency. Thus,aT

gives the magnitude of the “carrier” power andbT represent
he signal amplification due to the cavity.

.2. Transmission Spectrometer

The circuit for a simple transmission cavity arrangem
i.e., source–cavity–detector) with a vertically polari
ource is

CTV 5 SaT 1 ibTz
2bTz

D . [45]

A nonpolarizing detector such as a bolometer will measur
sum of the vertical and horizontal field amplitudes, produ
a signal given (after substituting Eq. [44]) by

aT
2 2 2aTbTsin vmt~x0! 1 2bT

2sin2vmt~~x9 ~1!! 2 1 ~x0 ~1!! 2!.

[46]

f a polarizer is placed in front of the detector so as to admi
lectric field component that is oriented at an angleu with

respect to the vertical, the incident electric field is the weig
sum of the vertical and horizontal components given in
[45]:

Eu 5 cosu ~aT 1 bTz! 2 sin u ~ibTz!

5 cosu ~aT 1 bTsin vmt~x0 ~1! 1 ix9 ~1!!!

2 sin u ~bTsin vmt~x0 ~1! 1 ix9 ~1!!!. [47]

The power detected will be proportional to the squared am
tude of this field,



lea
t an
m ts t
t up
t
c a
w ng
r an
t in t
o f

tor

th
urc
ona
wir
le
cte
bin

b
On
ete
m
mp

ha

f

g the
s
oes

ec-
(
rmer
urce
po-
ns-
the
urce.
the
the

tially
ted
PR

e two
l. This
ary
rence

,

hase
two
ince
of an

tio
b renc
a

27JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
uEuu 2 5 aT
2cos2u 1 aTbT@~cos 2u 1 1!x0 ~1! 2 sin 2ux9 ~1!#

3 sin umt 1 bT
2@~~x9 ~1!! 2 1 ~x0 ~1!! 2!#sin2vmt.

[48]

This result demonstrates how the detector polarization
o phase discrimination of the EPR signal in the simple tr
ission mode. The first, time-independent term represen

ransmitted source power at the detector, which depends
he detector orientation. More importantly, the sin(vmt) term
ontains both absorption and dispersion terms, which
eighted according to the detector angle. There is a half-a

elationship between the detector angle and the phase
hat determines the amount of absorption and dispersion
bserved spectrum. This arises from the cos2u dependence o

the detected power on the orientation angle of the detec

3.3. Induction Spectrometer

In order to recover phase information while operating wi
reflection cavity, it is necessary to divert some of the so
power into a reference arm, by analogy with conventi
waveguide-based EPR bridges. Typically a polarizing
grid is used for this purpose, although a nonpolarizing die
tric beam splitter may also be utilized. The beams refle
from the reference arm and the sample cavity are recom
in the detector with a phase difference that is controlled
changing the relative path lengths of the two beams.
example of such a circuit is the induction mode spectrom
shown in Fig. 3. This circuit must be represented by the su
two matrix products representing the paths along the sa
and reference arms.

In reflection cavity designs, it is also worth noting t
optical components oriented with a rotation angle ofu with
respect to the incident radiation present a rotation angle o2u

FIG. 3. Circuit diagram of the induction mode spectrometer configura
ased on a central wire grid with a moveable rooftop mirror in the refe
rm that enables phase adjustment of the reference signal.
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to the reflected radiation because of the convention definin
H direction. Thus, the grid appears first asGT(p/4) and then a
GR(2(p/4)) in the matrix product describing the path that g
through the cavity shown in Fig. 3.

In its simplest implementation, the induction mode sp
trometer resembles a standard polarizing interferometer30),
with the exception that there is no quarter-wave transfo
between the sample arm and the polarizing grid. The so
power is divided into two paths. In the first path, the com
nent of the initially vertically polarized radiation that is tra
mitted through the grid is not rotated upon reflection from
cavity and thus passes back through the grid toward the so
However, one of the linearly polarized components of
circularly polarized EPR signal is reflected by the grid into
detector. In the second path, the component that is ini
reflected from the grid is directed onto a rooftop mirror, rota
by p/2, transmitted by the grid, and combined with the E
signal at the detector. The phase difference between th
waves determines the phase of the measured EPR signa
is controlled by adjusting the rooftop mirror position to v
the difference in path lengths between the sample and refe
arms. The sum of the two paths is

FSGTSp

4DF~f!RR~0!GRSp

4DD
1 SGRS2

p

4DCRGTSp

4DDGV

5
1

2 S2e2f 2bRz
eif 2bRzD , [49]

which gives the signals for a vertically polarized detector

uEVu 2 5
1

4
1

bR

2
@cosfx9 ~1! 2 sin fx0 ~1!#sin vmt

1
bR

2

4
~~x9 ~1!! 2 1 ~x0 ~1!! 2!sin2vmt, [50]

and for a horizontally polarized detector,

uEHu 2 5
1

4
2

bR

2
@cosfx9 ~1! 2 sin fx0 ~1!#sin vmt

1
bR

2

4
~~x9 ~1!! 2 1 ~x0 ~1!! 2!sin2vmt. [51]

4. EXPERIMENTAL

We now present experimental tests of the signal p
behavior predicted by the Jones matrix formalism for the
spectrometer configurations detailed in the last section. S
the scales of the absorption and dispersion components

n
e
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EPR signal are related by the Hilbert transform (i.e.,
Kramers–Kro¨nig relations), the phase of an arbitrary sig

ay be measured by determining the relative contribution
bsorption and dispersion in the spectrum. This is most
eniently accomplished when both the absorption and
ispersion lineshapes are well represented by analytical ex
ions such as the Lorentzian function. In this case, the re
mounts of absorption and dispersion may be determine

east-squares analysis of the experimental spectrum.
A standard sample of 1 mM Tempone in undegassed to

olution was chosen for this analysis. This probe produc
otionally averaged three-line spectrum typical of nitrox
t ambient temperatures. At 220 GHz, rotational spin re
tion and line-broadening due to dissolved oxygen produ

ineshape that is very well approximated by the Lorent
unction. The experimental spectra were fitted by Levenb
arquardt nonlinear least-squares with a linear combinatio
orentzian absorption and dispersion lineshapes given b

unction

g~ x! 5 O
m51

3 FaA

22bm~ x 2 cm!

~~ x 2 cm! 2 1 bm
2 ! 2

1 aD

~bm
2 2 ~ x 2 cm! 2!

~~ x 2 cm! 2 1 bm
2 ! 2G . [52]

The fitting parameters includeaA, the amplitude of the absor-
tion component;aD, that of the dispersion;bm, the Lorentzian
linewidth (i.e., the inverse homogeneousT2) of the mth line;
andcm, the field position of themth line.

The locally constructed quasioptical 220-GHz spectrom
used to obtain the experimental spectra has been des
elsewhere (8). Here we summarize the spectrometer feat
that are most critical to the experiments described. The m
meter-wave source (Millimeter Wave Oscillator Co., Lo
mont, CO) produces 220-GHz radiation in a rectang
waveguide that is converted to a circular waveguide mode
launched into a Gaussian beam by a scalar conical hor
tenna (ZAX Millimeter Wave Co.). The output of the sourc
vertically polarized.

The source power is transmitted through a lens beam
to a semiconfocal cavity consisting of a flat, partially reflec
mirror and a spherical mirror. In the transmission mode,
ation is coupled through a small aperture in the sphe
mirror, launched from a smooth conical horn, and propag
down a second beam guide.

The detector used for these experiments is a Schottky
(Millitech Corp., DXW-04) mounted in a short length of re
angular WR-04 waveguide. The Gaussian beam emerging
the beam guide is converted to the appropriate rectan
waveguide mode by a second scalar horn/waveguide trans
The rectangular waveguide thus serves as a polarizing ele
in front of the detector.
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In both transmission and reflection cavities, the liquid s
ple was held in a cell consisting of two 25-mm-diame
0.33-mm-thick quartz windows (Boston Piezo) separated
1.6-mm Teflon spacer ring with a 15-mm aperture. The
assembly was sealed around the edges with epoxy (Torr
Varian Inc.) and a radial hole was carefully drilled into
center chamber to allow the introduction and removal of s
ple. The cell was held normal to the beam path in a sl
between the two mirrors described above and kept in pla
a retainer ring.

The sample volume was approximately 300mL. Since the
spectra were obtained in a low-loss solvent, it was not ne
sary to utilize thin samples or optimize the thickness of e
the windows or the sample layer, as has been described
ously for aqueous samples (8, 31).

Figure 4 shows examples of both absorption and dispe
spectra obtained in transmission mode and by observin
reflected signal in induction mode. Intermediate admixture
absorption and dispersion could be observed when the
was adjusted as described below for each of the spectro
configurations. For comparison with the predictions of
Jones matrix analyses for these circuits, the relative amou
absorption and dispersion in the spectra were quantified
function of phase angle adjustment using least-squares an
as described above. The solid lines in Fig. 4 show typ
least-squares fits of Eq. [52] to the experimental data.

Transmission Cavity

In the experiments carried out using the simple transmis
cavity design, the input horn of the detector was mounted

FIG. 4. Representative 220-GHz absorption (top) and dispersion (bo
spectra of 1 mM Tempone in toluene obtained in transmission (left)
induction (right) modes as described in the text. Solid lines show ty
least-squares fits of three Lorentzian lines (Eq. [52]) to the experimenta
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29JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
stage that allowed rotation of the detector about the symm
axis of the horn. Zero rotation was defined to be the orient
at which the rectangular waveguide accepts vertically pola
input (i.e., with the long axis of the waveguide cross-sectio
horizontal using a bubble level on the case of the detec
Spectra were recorded and the relative contributions of ab
tion and dispersion determined for a series of different det
orientations.

Figure 5 shows a plot of the unscaled absorption and
persion coefficients as a function of detector angle rotatiou.
The solid lines indicate the least-squares fits of the funct

aA 5 CAsin~2u 1 f!

aD 5 CD@1 1 cos~2u 1 f!# [53]

o the data (cf. thex9(1) andx0(1) coefficients in Eq. [48]). Th
scale factorsCA andCD were allowed to vary independently
the fitting procedure.

Induction Spectrometer without Cavity

A similar set of phase measurements was performed
the induction spectrometer arrangement shown in Fig. 3,
the exception that the flat mirror of the sample cavity
omitted to reduce possible phase anomalies due to sta
waves (cf. Discussion below). In this mode, the phase d
ence between the reference signal and the EPR signa
adjusted by moving the rooftop mirror relative to the cen
grid, which changed the path length of the reference

FIG. 5. Relative amplitudes of absorption (circles) and dispersion (c
es) signals as a function of detector rotation measured using a simple
mission configuration with the cavity placed between the source an
detector. Lines indicate least-squares fits as described in the text.
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Spectra were recorded as a function of mirror position (
arbitrary zero) and analyzed by least-squares fitting as be
The normalized absorption and dispersion coefficients are
ted in Fig. 6 as a function of rooftop mirror displacemend
relative to the central grid of the circuit. Solid lines indicate
least-squares fits of the functions

aA 5 cos~kd 1 f!

aD 5 sin~kd 1 f!,

ith k andf as variable parameters. The phase anglef from
the fitting procedure is not meaningful, since it merely spec
the zero of the arbitrary distance scale. The value ofk obtained

as 9.016 0.07 mm21, which corresponds to a wavelength
1.4 mm since the change in path length is twice that o
mirror displacement.

Induction Spectrometer with Cavity

Figure 7a shows one example of the highly skewed p
patterns that may be observed in the presence of a flat c
mirror. The normalized absorption and dispersion coeffic
shown in Fig. 7a were obtained in exactly the same way a
in Fig. 6, with the exception that both of the mirrors around
sample shown in Fig. 3 were present. The cavity was tun
resonance by moving the spherical mirror so as to minimiz
reflected power before the spectra were measured as fu
of rooftop mirror rotation.

Despite the complicated appearance of the patterns i
presence of the flat mirror, they were quite well fitted
assuming that the bias signal at the mixer consisted o

FIG. 6. Relative amplitudes of absorption (circles) and dispersion (c
es) signals as a function of rooftop mirror translation measured usin
induction configuration shown in Fig. 3 but omitting the flat partially reflec
mirror in the cavity. Lines indicate least-squares fits as described in the
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30 BUDIL ET AL.
reference arm signal added to a standing wave signal
constant phase. Specifically, the solid lines shown in Fig
were calculated using the expressions

aA 5 Re$Esw 1 exp@i ~kd 1 f!#%

aD 5 Im$Esw 1 exp@i ~kd 1 f!#%,

here the reference signal is assumed to have unit magn
nd the real and imaginary parts of the standing wave v
sw were varied separately in the least-squares fitting p-

dure. The magnitude ofEsw determined from the fit was 0.9
imes that of the reference vector, with real and imagi
omponents of 0.71uErefu and 0.57uErefu, respectively. The valu

of k obtained from the curve fitting was identical to t
obtained from the data in Fig. 6 to within experimental er
The results are summarized in the form of a phasor diagra
Fig. 7b.

FIG. 7. (a) Relative amplitudes of absorption (circles) and dispe
(crosses) signals as a function of rooftop mirror translation measured us
induction configuration shown in Fig. 3 including the flat partially reflec
mirror in the cavity. Lines indicate least-squares fits as described in the te
Phasor diagram showing the relative phases and amplitudes of the re
signal and a standing wave formed by reflection from the cavity. The anf
is varied by changing the position of the rooftop mirror.
ith
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de,
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5. DISCUSSION

Phase Discrimination

The experimental results demonstrate that the Jones m
formalism quite accurately predicts the phase behavior o
two systems investigated. In particular, in transmission m
the magnitudes of both absorption and dispersion signal
hibit the double-angle dependence on the detector orien
predicted by Eq. [48], including the cos(2u) 1 1 dependence
the absorption component. Thus, a “negative” absorption
nal cannot be observed by adjusting the signal phase in
configuration. It follows that the actual phase of the signal
transmission mode system, defined as tan21aA/aD, is not given
directly by one-half the detector orientation angle.

For the induction mode data, the results display the sin
dal dependence predicted by Eq. [50] for both the absor
and the dispersion signals. In induction mode, both pos
and negative signals may be observed for both the abso
and the dispersion signals.

Transmission Cavity Design

The only single-path spectrometer configuration that pe
phase discrimination of the signal is the simplest transmis
system consisting of a cavity placed between the source
polarizing detector. This geometry allows one to discrimi
phase without a separate reference signal because the
and the EPR signal have different polarizations. Equation
shows that the carrier signal is attenuated as the de
polarization is rotated, but its phase remains unchange
contrast, for the circularly polarized EPR signal, the appa
phase of the linearly polarized component that is transm
through a polarizing element may be advanced or delaye
rotating the element, but its magnitude remains unchan
This makes it possible to vary the effective phase of the
signal relative to that of the carrier simply by rotating
detector polarization. Thus, even in the absence of a sep
bias signal, a detector with a polarizing element functions
homodyne mixer in the transmission arrangement, wher
nonpolarizing device functions as a simple detector.

When the sample in a quasioptical transmission cavi
illuminated with linearly polarized radiation, only half of t
incident power is available for magnetic resonance, just a
conventional waveguide-based sample cavity. One m
therefore expect to increase the EPR signal by utilizing
correct circular polarization. This may be accomplished
placing a suitable quarter-wave transformer between the
tral polarizing grid and the sample cavity, as has been de
strated by Earleet al. (4) and Smithet al. (6). Up to a twofold
increase in absolute signal intensity can in principle be rea
with this approach, assuming that there are no differenc
detector sensitivity or cavity tune in the two configuration

However, it is important to note that the relative phase
the bias and EPR signals at the detector cannot be cont

n
the

(b)
nce
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31JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
when both are circularly polarized. Jones matrix analys
configurations employing one or two quarter-wave dem
strates that phase information cannot be retrieved from
transmission mode signal in these cases. For ideal syste
lock-in detector will measure a pure absorption signal whe
signal is illuminated with circular polarization in transmiss
mode. While this limitation may not seem undesirable, de
tions of the cavity from resonance, the presence of higher-
modes in the cavity, and even strong, asymmetric EPR si
can lead to significant admixture of dispersion into the sig
The absence of phase adjustability in such configurations
significantly limits their utility.

Induction Mode

A major advantage of the induction mode circuit tha
apparent from Eqs. [50] and [51] is that the carrier w
reflected from the cavity with coefficientaR does not appear
the detector in either the vertical or the horizontal polariza
This results from the fact that there is no rotation of
incident beam polarization between the dividing grid and
sample cavity. One consequence of this arrangement i
only one linearly polarized component of the EPR sig
reaches the detector. Depending upon the bias characte
and dynamic range of the detector, this feature may sig
cantly reduce the absolute signal power available at the d
tor relative to the simple transmission spectrometer. How
such a reduction can be mitigated or even eliminated b
proper choice of detector.

The simplest induction mode design shown in Fig. 3 util
fully half of the source power as a bias signal for the dete
which may be unsuitable for many detection schemes.
design can be significantly refined by introducing elements
allow control over the amount of power that is directed a
the reference arm, since only a small bias power is need
operate many homodyne mixers. In place of the dividing
oriented atp/4, it is possible to use a dielectric beam spli
26) to divert a small fraction of the power into the refere
rm and thus maximize the power in the sample arm. In
ase, a separate grid is needed to recombine the signal w
eference beam.

It is also possible to control the reference bias with
dditional grids by rotating the central grid (cf. Fig. 3).
xample, with vertical incident polarization, a grid oriente
bout 5° from the horizontal would send approximately 1%
20 dB) of the power to the reference arm, which is
ppropriate level for low-temperature bolometer mixers.
itional control over the bias power reflected into the dete
ould be achieved by rotating the axis of the rooftop mir
hese additional adjustments are easily accounted for i
ones matrix expressions by utilizing the general matrix fo
iven in Eqs. [38] and [39] for arbitrary orientations of th
lements.
A second important characteristic of the induction m
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design is that the ESR signal component at frequencyvm

appears with opposite signs in the vertical and horizo
polarizations, whereas the reference signal appears wit
same sign. This feature lends itself conveniently to a bala
mixer design in which two matched mixers are set to mea
in the vertical and horizontal directions and the signals
electronically subtracted. The signal intensity can thus be
bled with such an arrangement, while AM noise from
source is largely suppressed.

When all of the above factors are considered, the indu
mode configuration emerges as perhaps the most useful d
for general work. Smithet al. (5, 6) have described an indu
tion spectrometer that combines many of the advantag
individual components discussed above. The design func
in essentially the same way as the spectrometer shown i
3, but incorporates a number of significant refinements o
basic design that minimize stray reflections and stan
waves. The greatly decreased noise sensitivity in the indu
arrangement more than compensates for the reduced
intensity at the detector.

Standing Waves

The presence of standing waves in the system can dra
cally alter the simple sinusoidal dependence of the absor
and dispersion signal intensities predicted by the basic J
matrix formalism, as shown in Fig. 7a. Presumably, stan
waves arise between an imperfectly matched cavity and
partially reflective elements in the transmission circuit.
though it is difficult to extend the formalism itself to acco
for such effects waves explicitly, the basic result can be c
bined with the appropriate vector analysis to identify
characterize adventitious signals in the system. In this wa
EPR cavity containing a well-characterized sample ca
made to serve as anad hocvector analyzer.

Perhaps the most important effect of strong system sta
waves is on the spectrometer sensitivity. As noted in Appe
2 of Ref. (6), even small deviations of the cavity frequen
from resonance can lead to a significant amount of conve
of FM noise from the source to AM noise at the detec
Variations in the cavityQ appear as changes in the coefficie
aR andaT (as well as the much smallerbR andbT terms) in the
Jones matrix expressions. One of the major causes of
deviations is microphonic vibration of the cavity mirrors
sample due to Lorentz forces on the field modulation c
which can be quite large at high magnetic fields.

Microphonic vibrations can lead to direct modulation of
carrier signal, so that the terms depending onaR andaT in the
Jones matrix expressions have a sin(vmt) dependence th
appears in the signal at the lock-in amplifier. In addition
generating greater noise, these effects produce a large ba
offset that limits the dynamic range of the lock-in amplifi
Thus, circuit arrangements that allow a significant amou
power reflected from the cavity to reach the detector ma
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32 BUDIL ET AL.
much more susceptible to noise than circuits which isolat
cavity from the detector, leading to lower sensitivity des
the apparently larger signal intensity.

Comparison with Alternative Treatments

We now briefly compare the Jones matrix derived fo
quasioptical reflection cavity to recent results from an alte
tive type of cavity analysis (6, 32). The essence of the approa
is to construct a set of field equations for the resonator b
upon the reflection, transmission, and absorption coefficien
the cavity elements, including the EPR sample. One can
solve for the incident and reflected fields as well as for the
circulating in the cavity.

The shunt transmission cavity analyzed by Barnes and F
(32) in this way allows the coupling parameter for the cavit
be varied by adjusting the spacing between a pair of diele
beam splitters in the center of the cavity. The second m
feature of the cavity is that the spherical cavity mirrors
placed along an axis perpendicular to the direction of
incident beam. This geometry allows planar samples su
aligned membranes to be placed with their normal axis
pendicular to the spectrometer field. Despite the signifi
differences in the geometry of the shunt transmission c
from the Fabry–Perot geometry utilized in most high-
quency spectrometers, the results of their analysis corres
directly with the Jones matrix given for a quasioptical tra
mission cavity in Eq. [34]. For the particular design descr
by Barnes and Freed,b1 and b2 in Eq. [34] would be esse-
ially equal.

Smithet al. (6) have presented a similar cavity field analy
for the basic Fabry–Perot resonator. One of their major
clusions was that the magnitude of the cross-polar signal
a cavity illuminated with plane-polarized radiation has a fi
strength similar to that of the copolar signal if the reflecti
of the coupling mirror is the same for both linear states.
result follows immediately from an examination of Eq. [3
which is the Jones matrix expression for a reflection cavi
which the coupling mirror has a reflectivity that is independ
of the incident polarization state.

Also treated in the analysis of Smithet al. is the case of
avity in which one of the mirrors is polarizing. In this case,
eld analysis shows that the cross-polar signal is obtained
sensitivity proportional to (QL)

1/2, whereQL is defined in
terms of the coupling parameter for the mirror in the cop
direction. The corresponding Jones matrix for this case m
derived by analogy with the equivalent circuit analysis g
by Portis and colleagues (16, 33).
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Perhaps surprisingly, this result shows that the magnitu
the signal is the same regardless of whether one excites p
and observes perpendicular to the mirror polarization or ex
perpendicular and observes parallel to it. In the former cas
cavity amplifies the millimeter-wave power, whereas in
latter, the cavity amplifies the EPR signal itself.

Such a cavity might be useful in time-domain spectrome
where isolation of the detection circuitry from high-powe
source pulses is desired. It could also be utilized as a var
coupling cavity by rotating the orientation of the polariz
mirror with respect to the input polarization. The general f
for such a Jones matrix would then be given by a coord
transformation, by analogy with the other polarizing elem
discussed above.

Limitations and Possible Extensions of the Jones Matrix
Formalism

We now briefly examine some of the major assumptio
the Jones matrix formulations in order to assess their va
for practical applications, and we briefly indicate how
formalism may be adjusted to compensate for them. The
and probably the most important, assumption is that the
linear polarization states in the cylindrical cavity are w
isolated (.30 dB). Problems may arise if cross-polar mo

re excited by the quasioptical elements used to couple
ion into the cavity. Since polarizing elements with at leas
B of isolation are readily available, this is usually a neglig
ffect. However, the sample itself may scatter the inci
ower into the orthogonal mode by mechanisms other
agnetic resonance. These effects can in general be mo
y including additional off-diagonal terms in the Jones m
es for the cavities that couple the two orthogonal lin
odes.
A second major assumption of the formalism is that the
single resonant mode inside of the cavity, specifically

undamental mode of a Gaussian beam. Mode impurities i
nput beam, irregularities in sample geometry, scattering
rises or imperfections in the cavity mirrors, and aper
ffects can all cause coupling into higher radial modes o
avity. Such modes tend to have field distributions ov
arger effective diameter than the fundamental mode
odes near the sample region. More importantly, higher m
an differ in phase from the fundamental so that electron
hich interact primarily with a higher radial mode may p
uce an EPR signal with a significantly different phase f

hat of the carrier wave. (We have accidentally observed
ffect in liquid samples that developed a large bubble nea
enter of the cavity where the field amplitude of the fun
ental mode is concentrated.) In principle, this type of e

ould be handled by constructing a Jones matrix for each o
elevant higher order modes and utilizing a scattering matr
ntroduce coupling between the modes. In practice, howev
hould generally be more effective to adjust the signal pha
he detector to compensate for mode impurities.
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33JONES MATRIX FORMALISM FOR QUASIOPTICAL EPR
The third major assumption of the formalism prese
above is that the cavity is tuned to its resonant frequency
that the magnetic resonance causes only a small deviation
this condition. The implications of this assumption for sys
noise performance have been considered above. Here w
that certain types of cavity detuning can also introduce p
shifts in the signal that are not explicitly accounted for by
formalism. Displacement of the cavity mirrors from their
sitions at perfect tune can change the phase of the com
valued cavity reflection coefficient, which may influence
apparent phase of the EPR signal. Similarly, displacemen
lossy sample from a node of theE field in the cavity ma
introduce phase shifts that are not accounted for in the J
matrix formalism. Both of these effects may be taken
account using a transfer matrix analysis of the cavity elem
including the windows of the sample cell and the lossy die
tric layer containing the sample.

Finally, in the absence of automatic frequency control
shift in effective cavity frequency at EPR resonance can de
the cavity enough to introduce a significant dispersion com
nent for very strong signals. Phase anomalies caused by m
or sample displacement may readily be corrected by adju
the signal phase at the detector. One possible solution fo
third type of artifact is to implement automatic freque
control (AFC) as is used at lower EPR frequencies (34, 35) or
an analogous scheme to lock the quasioptical cavity to
incident source frequency. The majority of high-field E
spectrometers described in the literature do not have s
feature, although a recently reported design utilizes the
day rotator scheme to monitor the power reflected from
cavity for feedback into an AFC loop (6).

CONCLUSION

An extension of the basic Jones matrix formalism to h
frequency, quasioptical EPR has been presented, and the
analogies between this method and the standard represe
used for conventional EPR circuits have been demonstr
The two spectrometer configurations most commonly us
quasioptical systems, namely the simple transmission m
and the induction mode, were analyzed using the forma
Experimental tests of the phase performance of each co
ration at 220 GHz verify the predictions of the analysis.
effect of standing wave anomalies on the phase performan
reflection cavity designs is also illustrated experimentally.
formalism can usefully be integrated into a general analys
spectrometer performance and sensitivity and also serv
identify methods for achieving phase discrimination u
standard homodyne mixer detection schemes.
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